Formules en grafieken — Exponenten en logaritmen — Totaalbeeld

In dit onderwerp heb je gewerkt met exponenten en logaritmen en heb je met name gewerkt aan situaties waarin exponentiële groei of exponentieel verval belangrijk is. Je hebt de eigenschappen van exponentiële en logaritmische functies leren kennen. En je hebt gewerkt met logaritmische schalen en logaritmisch grafiekenpapier.

Je hebt nu alle theorie van Exponenten en logaritmen doorgewerkt. Er moet een totaalbeeld van deze leerstof ontstaan... Ga na, of je al de bij dit onderwerp horende begrippen kent en weet wat je ermee kunt doen. Ga ook na of je de activiteiten die staan genoemd kunt uitvoeren. Maak een eigen samenvatting!

exponentiële groei en lineaire groeigroeifactor exponentiële functiehorizontale asymptoot verdubbelingstijd en halveringstijd logaritmeverveelvoudigingstijd logaritmische functieterugrekenfunctie logaritmische schaalenkellogaritmisch grafiekenpapier exponentiële groei en lineaire groei vergelijkende groeifactor vaststellen bij exponentiële groeigroeifactoren omrekenen; een exponentiële functie herkennenhorizontale asymptoot herkennenbijbehorende vergelijkingen grafisch oplossenverdubbelingstijd, halveringstijd berekenen; logaritme gebruiken om een exponentiële vergelijking op te losseneigenschappen van logaritmen benoemenlogaritmen berekenen met behulp van de rekenmachine; een logaritmische functie herkennengrafieken van logaritmische functies makenvergelijkingen met logaritmen oplossen door terugrekenen met een exponentiële functie met hetzelfde grondtal; logaritmische schalen aflezengrafieken tekenen op enkellogpapierformule opstellen van een exponentiële functie op enkellogpapier.

Paracetamol is het wereldwijd meest gebruikte pijnstillende en koortsverlagende middel. Het wordt onder andere verkocht in pillen van 500 mg. Na inname in het lichaam (een pilletje paracetamol slikken) wordt deze stof ook weer langzaam afgebroken. De halveringstijd is (afhankelijk van de omstandigheden) ongeveer 3 uur.

Hoeveel uur na inname is nog 12,5% van de paracetamol in het lichaam over?

9 uur.

Hoeveel bedraagt de groeifactor per uur in drie decimalen nauwkeurig? En het afnamepercentage per uur?

0,530,794 , dus een afname van 20,6% per uur.

Als de hoeveelheid paracetamol in je lichaam onder de 50 gram is, gaat er geen werking meer van uit.

Je slikt twee paracetamolpillen van 500 gram. Na hoeveel uur zijn ze uitgewerkt?

Gebruik grafieken om 10000,794t=50 op te lossen. Je vindt ongeveer t13 uur.

Samoa is een republiek in Polynesië die bestaat uit de westelijke Samoa-eilanden. In 2006 bedroeg het aantal inwoners volgens een officiële volkstelling 179186. N is het aantal inwoners van Samoa afgerond op honderdtallen en t is de tijd in jaren vanaf 2006.
Het aantal inwoners werd voor het jaar 2012 geschat op 194300.

Als je uitgaat van lineaire groei, welke formule kun je dan opstellen voor N afhankelijk van t?

N179200+2500t

Ga na dat bij de gegevens ook exponentiële groei past met een percentage van ongeveer 1,36% per jaar.

Ga na: 1792001,01366194300.

Welke formule geldt voor N afhankelijk van t als je van exponentiële groei uitgaat?

N=1792001,0136t

Bereken voor beide soorten groei in welk jaar het aantal inwoners van Samoa voor het eerst de 200000 zal overschrijden.

Lineaire groei: 179200+2500t=200000 geeft t=8,32 , dus in 2015.
Exponentiële groei: 1792001,0136t=200000 geeft met een tabel t8,1 , dus ook in 2015.

In 2000 was het aantal inwoners van het werelddeel Afrika ongeveer 872 miljoen en in 2010 was dit aantal ongeveer 1138 miljoen. Het aantal inwoners groeide exponentieel.
Azië had in 2000 meer inwoners, namelijk 3864 miljoen, maar het groeipercentage was 1,5% per jaar.

In welk jaar zal - mits de groei zo door gaat - het aantal inwoners van Afrika dat van Azië gaan overstijgen? Schrijf de bijbehorende ongelijkheid op.

Bepaal eerst de groeifactor per jaar van het aantal inwoners van Afrika. Ongelijkheid: .
Grafisch oplossen geeft: . Dus dit zal in 2127 gebeuren.

Een pakje boter wordt in de koelkast geplaatst. Daardoor daalt de temperatuur van de boter. Neem aan dat voor die temperatuur geldt , met t in minuten en T in °C.

Hoeveel bedroeg de temperatuur van de boter voordat ze in de koelkast werd geplaatst?

20 °C.

Hoeveel bedraagt de temperatuur in de koelkast?

6 °C.

Maak een grafiek van T als functie van t.

Gebruik GeoGebra of je grafische rekenmachine.

Bereken na hoeveel minuten de temperatuur van de boter minder dan 1 °C van de temperatuur binnen de koelkast verschilt.

geeft en dus , zodat minuten.
Dus .

De luchtdruk in millibar hangt af van de hoogte (kilometer) boven het zeeniveau. Bij benadering geldt:

waarin de luchtdruk op zeeniveau voorstelt.

Neem aan dat millibar. Maak de grafiek van als functie van .

Deze figuur is gemaakt met GeoGebra.

GeoGebra, voer in:
Venster bijvoorbeeld: en

In een vliegtuig wordt een luchtdruk van 400 millibar gemeten. De luchtdruk op zeeniveau is op dat moment 1010 millibar.

Bereken hoe hoog het vliegtuig vliegt.

, dit geeft

Het vliegtuig vliegt op ongeveer km hoogte.

Neem aan dat . Druk uit in . Rond waar nodig af op drie decimalen.

De bemanning van een vliegtuig gaat uit van millibar op zeeniveau en berekent dat het vliegtuig zich op kilometer hoogte bevindt. De luchtdruk op zeeniveau is echter millibar.

Hoe hoog bevindt het vliegtuig zich in werkelijkheid? Rond af op meters.

Het vliegtuig bevindt zich op ongeveer m hoogte.

De bemanning meet een luchtdruk van ongeveer mbar.

en dit geeft .

Het vliegtuig bevindt zich op ongeveer m hoogte.

In een laboratorium is onderzocht hoe de toename van het aantal bacteriën in gram salade afhankelijk is van de temperatuur. Bekijk in de grafiek de resultaten bij een temperatuur van en bij een temperatuur van graden Celcius. Bij een hogere temperatuur groeit het aantal bacteriën sneller.

Van hoeveel bacteriën is bij het onderzoek uitgegaan?

bacteriën

Lees af uit de grafiek. Op tijdstip zijn er bacteriën.

Geef zowel voor als de formule van het aantal bacteriën na dagen.

( graden) en ( graden).

door geeft , dit geeft ( graden).
door geeft , dit geeft ( graden).

Bereken hoeveel keer zo veel bacteriën er na tien dagen bij  °C zijn vergeleken met de situatie bij  °C.

Er zijn ongeveer keer zo veel bacteriën.


Er zijn ongeveer keer zo veel bacteriën.

Bereken hoeveel de verdubbelingstijd bij een koeling bij  °C bedraagt.

De verdubbelingstijd is uur.

, geeft dagen.

De verdubbelingstijd is uur.

Zuurgraad

In de scheikunde wordt het begrip zuurgraad gebruikt om aan te geven of een bepaalde oplossing meer of minder zuur of basisch is. De zuurgraad wordt voorgesteld door pH en weergegeven op een logaritmische schaal.

De zuurgraad is een maat voor de concentratie waterstofionen in mol per liter. Je geeft die concentratie aan met [H3O+]. In een neutrale oplossing is de concentratie waterstofionen: [H3O+]=10-7 mol/L. De zuurgraad is dan . Dit getal is het tegengestelde van de logaritme van : pH=-log(10-7)=7. Onder de zuurgraad van een bepaalde stof versta je: pH=-log(H3O+).

Bij geconcentreerd zwavelzuur is [H3O+]=18 mol/L. Hoeveel bedraagt de zuurgraad?

pH

Huishoudammonia (verdunde ammonia) heeft een zuurgraad van . Hoeveel bedraagt de H3O+-concentratie in mol/L?

-log(H3O+)=11,5 dus [H3O+]=1011,53,161012 mol/L.

Zure regen heeft een pH-waarde van . Hoeveel bedraagt de H3O+-concentratie van zure regen?

-log(H3O+)=4 dus [H3O+]=104=0,0001 mol/L.

Vanaf welke H3O+ concentratie is de zuurgraad negatief? Is de oplossing dan heel zuur of juist niet?

-log(H3O+)=0 dus [H3O+]=1001 mol/L, dus als [H3O+]>1 mol/L. De oplossing is dan niet erg zuur, maar wordt steede zuurder.

De aanduiding pH-neutraal op cosmetische producten betekent iets anders dan een pH van . Het geeft aan dat het product een pH heeft die overeenkomt met de natuurlijke pH van de huid. De natuurlijk pH van de huid is ongeveer . Hoeveel bedraagt de H3O+-concentratie dan?

-log(H3O+)=5,5 dus [H3O+]=105,5 mol/L, dus [H3O+]=3,16106 mol/L.

C-14 methode

In levende organismen komt behalve het radioactieve koolstof C-14 ook het niet-radioactieve C-12 voor. Gelukkig is de verhouding van de hoeveelheid C-14 ten opzichte van C-12 zeer klein. Deze verhouding is constant . Wanneer een organisme sterft verandert de verhouding door radioactief verval van C-14. Door de verhouding te meten kan de ouderdom van resten organisch materiaal berekend worden. De halveringstijd van C-14 is jaar.

Een archeoloog vindt een bot waarvan de verhouding C-14 : C-12 gelijk is aan . Hoeveel jaar is dat bot ongeveer oud?

geeft . De verhouding C14 : C12 . Dus . Dat geeft , dus ongeveer jaar.

Bij een Egyptische mummie blijkt de verhouding van C-14 en C-12 ongeveer keer de verhouding van C-14 en C-12 in levende organismen te zijn. Benader de ouderdom van deze mummie.

Ongeveer jaar.

geeft , dus ongeveer jaar.

In 1947 zijn aan de westzijde van de Dode Zee de Dode-Zeerollen (oudtestamentische handschriften) gevonden. De verhouding van C-14 en C-12 in de perkamenten rollen bleek tussen de % en de % van die bij levende organismen te zijn. Vanaf hoeveel jaar voor het begin van de jaartelling tot hoeveel jaar erna zijn de Dode-Zeerollen geschreven?

Tussen en jaar.

geeft . geeft . Dus tussen en jaar.

Een jaar oude kist werd in een hunebed (grafkelder in de provincie Drenthe) aangetroffen. Hoe groot is de verhouding van de aangetroffen hoeveelheid C-14 en C-12 ongeveer in vergelijking met die van een houten kist uit onze tijd?

Ongeveer % van de oorspronkelijke hoeveelheid.

, dus ongeveer % van de oorspronkelijke hoeveelheid.